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USE OF FLOYD’S ALGORITHM TO FIND SHORTEST RESTRICTED PATHS

VICTOR KLEE and DAVID LARMA N

University of Washington , Seattle and Un i versity College , London

Abstract. In a directed network wi th no negati ve circuit , Floyd’ s al gorithm

finds , for each pair of nodes x and y, a shortest path from x to y.

Here the procedure is extended to minim ize more general length-functions over sets

of paths that are restricted in various ways.

Introduction .

Throughou t this paper, C denotes a complete directed graph wi th n nodes and

- n edges. Each edge is an ordered pair (1 , j) of nodes and has as its length

a number A(i , j)~R* = ] _ c~ x~]  For notati onal convenience C’s node-set is

assumed to be the set N = {l , ~~
“, n}.

A walk from x to y is a node—sequence (x0,” , x
~
) such that x0 x ,

x.~ 
= y, and t > 0. It is a chain if no node is repeated and a circuit if = x0

but there is otherwise no repetition. Both chains and ci rcuits are called paths , a

practice that is unusual but is convenient for our purposes .

Floyd’s algorithm [R]LW][F][H2][L] initializes S[i , j ]  A(i , j)
for al l i , j~ N and then proceeds as follows :

for k ÷ 1 until n do

for i ÷ l  until n do

for j ÷ 1  unti l n do

S[i , j] min{S [i , j], S[i , k] + S[k, j ]} .

If there are no ci rcuits of negative length then S[x, y] ei~erges as the len gth of

a shortest path from x to y. The computation is easily modified to find shortest

paths in addition to their lengths.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -...~~
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1.2

In the present paper the procedure is extended to deal with a family F of

sets of walks and wi th a walk-length function L more genera l than the usual one.

Under suitable assumptions the extended procedure finds , for each choice of

x , y€N and ZEF~ a shortest Z-path from x to y. That is , L is minim ized

over the set of all paths from x to y that belong to Z. rn the “class i cal ”

case, Z is the set of all paths (or walks) in G , F = (Z}, and the length of a

wal k is the sum of the length of its edges.
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2.1

The function L is used to measure the length of a walk in terms of the lengths
*of its edges. It is assumed the range of L Is contained in R , the domai n of

*L is the set of all finite sequences in R , and the fol lowi ng two condi tions

are satisfied:

*
(1) ii “l’”~ ’ atcR and O<s<t then

L(~1~~”, a~ ) = L(L(~1, ”, ~ ), L(~~÷11 ”~ , ~ ))

(2) 
~~ ~~ ~~ ~~~~

‘ ~2 E m g L wi th 
~~~~~~~~ ~2 ~ ~2 

then L(a1 ,cx 2
) ~ L( 8 1 ,B 2 ) .

The length of a walk W = (x0,•” , xt) is defined as

L
~
(W) = L(A (x0, x1 ),

... , A (xt i ~ 
xt)).

By (1), L
~
(UV) = L

~
(L
~
(U), L

~
(V)) when U is a wal k from x to y and V is a

walk from y to z. Here UV denotes the wal k that fol lows U from x to y and

then follows V from y to z.

Among the admissible functions L are

L~(ct 1~”~~ ~ ) 
= ( +...+ cx~~)

11’~ for an i nteger p > 0,

L ( ct 1, ” , c~~) = max(a1,”~ , at
),

L~(a1,” , at) 
= (la 1 !~~~~ Iat I~

)
~~ 

for a real p > 0.

The usual L is L1. The function L,~, 
is also of practical interest, for if G

Is initially equipped with nonnegati ve real edge-wei ghts y(i , j) representi ng

flow capaciti es and if A (i , j) = —y(i , j) for all I and j, then the shortest

paths with respect to I are those of maximum flow capacity for specified initial

and terminal nodes EH1][H2][L].

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



3.5

the end of the initializati on and also at the end of each passage through the

loop there exists a shortest Z-path P from x to y such that the following

three condi tions are satisfied :

(a) s is odd ; STACK[l] = y; if p > 0 then PATH[l] = x;

(b) PATH[l],... , PATH[p], STACK[s], STACK[s—2],•” , STACK[l] i s a subsequ ence

of P;

(c) for each odd k with 3�k�s , the segment of P that joins i = STACK[k]

to .5 = STACK[k-2] is a shortest STACK[k-l]-path from i to .5.

We turn now to EYIFA. For W€F and O�k�n , let denote the set of all

walks ( x , .., x
~

) E W such that x�k when O<s<t. Thus the end nodes of walks

in 
~k 

are unrestricted but all intermediate nodes are in {l ,’”- , k}. Let

= {
~k

: W~F}. Since W = W for all WEF , it suffi ces to prove the following

for 0�k�n:

(b k) After the kth passage through the main loop of EVFA , conditions (8) and

(9) are satisfied for all x , YEN and ZEFk.

The proof is by induction on k. Here initialization is regarded as the 0th passage

through the mai n loop and assertion (lO s) is obvious because is merely the

set of all edges (paths (x0, x1 )) in Z.

From the argument below it follows that 
~
10k~ 

hol ds for al l k regardless of

the order in which i , j and (U, V . W) appear in the main loop. In particular ,

the main loop could be wri tten as

for k ÷ l  unti l n do

~~ 
eac h (y~ v , W)ET ~2.

for each (i , j)e{l ,”., n}x(l ,.~ ., n} do . .

That is convenient for programming in some languages with special array-handling

capabilities , such as APL.

-—— -

~
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3.6

Now suppose , wi th 0�k�n , that 
~
10k—l~ 

holds , and consider the kth passage

through the main loop. We note first that if i or j is k then there do not

exist U, V€F such that UV c w and

(d) Mw[i, j] 
= — l but Mu[i, k] ~ — l ~ 

Mv[k, j] or

(e) L(Su[ii k], Sv[k~ 
j])< ~~~~ j]. 

-

Suppose, for example , that j = k. If (d) hol ds there is no 
~k l

_Path from i to

k but there is a tik l
_pa th U from i to k and there is a Yk-l path V from

k to k. But then UV is a 
~k

walk from i to k and by condition (4) there

is an associated 
~k

Path P from i to k. Pla i nly P i s , in fact , a Wk l
_path

~
and that is a contradiction. A similar contradiction is deri ved from (e), using

conditions (1) - (4) and the inducti ve hypothesis. It follows that the kth rows

and kth columns of SW, Mw, U~ and V~ are unchanged by the kth passage through

the main loop . Hence (10k) holds for all Z
~
Fk and X , YEN wi th x = k or y = k.

The case i n whi ch x~k~y remains.

Supposing, still , that O<ksn and (10k_i ) holds , consider WEE and i , jEN

with i~k~j. We discuss only the case in which Ce) holds at some time during the

kth passage, for the other cases (described i n terms of (d) and (e)) are sim i lar. Let

= min
~
L(S

~
[i, k], Sv[k, j]): (~, Y~ 

W)ET},

the minimum during the kth passage , and let (U’, V’) be the first pair (U, V)

for which the minimum is attained. Then at the end of the kth passage,

= 
~
i, Mw{i, .5] = k , U~[i , . 5]  = U’ , Vw[ I , 

= 
~~

‘

let U be a shortest y <..1-path from i to k and let V be a shortest 
~~k-l

path from k to .5 ,  whence L
~
(UV) = p. Then UV e W V ’  c W and hence UV is

- 
-L .~~~~~~~ -rn~ -— ~~~~-. - .  __ .  —. 

__ 
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3.7

a 
~k

_wal k from i to j .  For (10k) it suffices to show UV is a shortest

~k
_path from i to j. Consider an arbitrary shortest Wk—wal k W from i to

j and an arbitrary associated path P = (x0, ”- , xt). Then P E 
~k and

LA (P) � LA (t4) , whence of course

L
~
(P)=L

~
(W) � L~(UV).

The node k appears in P for otherwise it is true at the end of the (k_ l ) th

passa ge that  Sw[i, j] = L
~
(P) and then Ce) never holds during the kth passage ,

contrary to hypothesis. With x~ = k there exist U and V such that

(x0,
... 

, x5) e U , (x5,” , x
~
) E V and (U, Y, W) E 1. But then

LA (UV) 
� L(Su[i, k], S~

[k, j] � L(L
~
(x ,..., x) , LA (x~~

” ‘

whence L
~
(UV) = L

~
(W) and UV i s a shortest 

~k~~~
lk from i to j. If UV is

not a path it has an associated path that misses k , and that was shown to be

impossible. 

—.-- ---—--~~~~~~~~---- .~~~~~~~~~~~~~--~~~~~~~ . - -
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4.1

T h ! !~~~~19!~~
.

Though conditions (1)-(4) suffice for the validi ty of EVFA , some additional

conditions a~d in veri fying condition (4) for specific applications. The function

L ~s said to be nice if in addition to (1) and (2) it satisfies the following two

- conditions :

(11) each point of~~~ L is fixed under L; that is , L(ct 1, ”, at ) =

L(L(a1,”~ , at ) ) ;

(12) if ~ � 0 then L(cz, ~) � L(a) � L(~ , a) for all ~ e m g  L.

Note that each of L , I and L~ is ni ce.p
If W is a walk (x , ”, xt ) and the proper segment 

~~~~~~ 
x 5 ) of W

is a circuit C then C is called an intermediate c i r c ui t  of W and W rs denotes

the walk that remains when all of C but X
r 

or x5 is removed from W. More

precisely, when 0 < r W rs is the walk (x 0 ,” , x ,  x5~1, ... , xt)~ (x, - . - -. , xr~
xs÷i )

or (x ,- ... , X r) according as s+lct, s+l = t or s = t , and when s < t W

is the walk (x 0 ,”~ , xr l ~ 
x 5 ,

..., x~), (X 1, x ,..., xt ) or (x5,.” , x
~
) accord-

ing as r-1>O , r—l = 0 or r = 0.

Note that a walk is a path if and only if it has no intermediate circu it. Hence

condition (4) can be deduced from repeated application of the following conditi on:

(13) if W = C x , ... , x
~
) W e F and (X r~~

•*
~ 

x5) is an i ntermediate circuit

of W then W ~ W and L (W ) � L (W).— rs - —  A rs A

Note that the i nequality of (13) always holds when L = L .  In other cases it

can often be deduced from the following result.

(14) If I is nice , C = (X
r~~

•••
~ 

x )  is an intermediate circuit of a walk

W = (x0, 
• .
, xt) and LA (C) � 0 then LA (W )  � L

~
(W).

To prove (14), note that W = CWrs if r = 0, W = W 5C if s = t, and if

O<r<s<t there are walks U and V such that W = IJCV and Wrs 
= UV. We consider 

-, -~~-rn~~~~~~- ----”.-~ .--
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4.2

only the third case for the others are similar to it. With L
~
(C) � 0 , it follow s

from (11), (12) and (1) that

L
~
(U) = L(L

~
(U)) � L(L ~(U) , L

~
( C ) )  = LA (UC),

then from (1) and (2) that -

Lx (W rs ) =L
~

(UV) = L(L
~

(U), LA (
~~ 

� L(L
~
(UC), L

~
(V)) LA (UCV) = L

~
(W).

Below are some illustrati ve problems on shortest restricted paths. In each

case , “find shortest paths ” means that for each x , yeN , either a shortest path

from x to y (among those satisfying the indicated restrictions) must be found

or it must be conclude d that no path from x to y satisfies the restrictions.

(A) A set of edges is given. For each k � £ , find shortest paths that use

at most k of the special edges.

(B) A set of nodes is given . For each k � £ , find shortest paths that use at

most k of the special nodes.

(C) A sequence of s sets is given , each consisting of nodes or edges or a

mixture . For each choice of (k1, .., k5) wi th kr ~ 
£r for all r, find

shortest paths that use (for all r) at most kr of the elements of the rth set.

(D) In additi on to the R*_valued edge-lengths A (x ,  y) ,  integer edge-lengths ~r(x ,y)

� 0 are given. Each wal k has its usual length L
~ 

and also a length I

where I is L
1
. An integer £. � 0 is given - . For each k � ~~~, f i n d  L a_shortest

paths P subject to the restriction that I
~
(P) � k.

(E) The nodes of C are parti tioned into two disjoint sets A and B , and an

integer .
~~ � 0 is given. For each k � L , find shortest paths that oscillate at

most k times between A and B. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(F) A subgraph H of C and an integer  .~~ � 0 are given. For each k � .e,

find shortest paths P for which P n H has at most k components .

(G) A set M of edges of G is given . Find shortest M-alternating paths.

As can be seen by reference to conditions (1)-(4) and (13)— (14), the discussions

of (A)—(G) below are val id (that is , EVFA can be applied for the stated purpose )

if I is L and also if L is nice and L
~

(C )  � 0 for each circuit C inter-

medi ate to a walk belon gi ng to a member of F, where F is the family of sets of

walks used for the particular problem. (Problem (C) requires an addi tional condition ,

stated later.)

(A) This problem , which  was menti oned earl ier, is straightforward . For 0�k~~,

let W(k) denote the set of all walks (x 0 ,
..., xt ) such that the edge (x

~~i~ 
x~)

is special for at most k values of I. Let F = {W(k): O~k�.e} . Let T = U
~
Tk

where

Ik 
= {(W(i), t (j), W(k)): i+j = k}.

Then Il k ! = k+l and TI = (Z+1)(~e+2)/2. The overall time-complexity of EFWA for

this problem is 0(L2n~).

(B) This problem is similar to (A),  but i t  is included to illustrate the way

in which the end behavior of walks must sometimes be considered in constructing

F and T for the applicati on of EFWA . For O�k�.~ let W__ (k )  (resp. ~_~ ( k ) ,

W~~(k), W÷÷(k)) denote the set of all walks (x 0 ,-- . . . , x
~

) such that the node ~
isspecial for at most k values of I with O<i<t and , in addition , neither x0
x~ is special (resp. x~ is special but x0 is no~, x0 is special but x~

is not, both x0 and x~ are special). let F c.c,nsist of the sets W (k) for

k < , the sets W~~(k) and W~~(k) for k�~-1 , and the sets W~~(k) for  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ -~ . -~~~~ _~~~~~~~~~~~~~~~ -
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k � Z - 2. let T = U
~
Tk) where 

~k consists of the triples

(~L
__
(i), W (j), t~

__
(k)) for i+j = k ,

(W (i), W ÷(j), w ÷(k-l)), (W~~(i), W (j), W÷ (k-l))

and (W~~(i), ~~_ (j), W (k)) for i+j k—i ,

(W ÷(i), ~~~~~ ~~÷(k—1) ), (~~÷(i), ~~_ (i)~ w~~(k—l ))

and (W~~(i), W ÷(j), W~~(k-2)) for i+j k-2 ,

and (W ÷~(i), 
~~÷(j), W~4 (k — 2))  for i+j = k—3.

Again , IT ! is 0(Z2) and the cornplexity of EVFA is O(Z2n3).

(C) This is included to illustrate the application of EVFA when the desired
a

paths are subject to several restricti ons. In order to avoi d,~notational morass ,

only the case of sets of edges is discussed. For k 1 � ,
.. •

, k~ � Z~, let

W(k1,... , k5) denote the set of all walks (x0,
... 

, xt) such that , for l�r�s ,

(xi i ,  x~) belon gs to the rth set of edges for at most kr values of i. Let

I consist of all tri ples

(W(i 1,”-., I), W(j1,”., ~~ W(k1,”~ , k5))

such that for l�r~s, ~ + ~r 
= km 

< er. Then

= Y~ =o ~~=o 1k= 0 ((k1+l)(k2+l) ... (k5+l )) =
and the complexity of EVFA is

0(2 5(e1 e2
•. .1 )n )

(0) This may be regarded as the integer-weighted version of a problem of which

(A) is the cardinality-weighted version. Similar extensions are available for the 

.~~~~~~~~~~~~~~~
,_ .-- ~~~~-.- -~~~~
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other problems considered here. For Osk�Z, ‘let W(k) be the set of all walks

W for which 1 (W) � k. Define F and I in the obvious ways. The complexity

of EVFA is O(Z2n3). For a closely related treatment of this problem and of

(A),  see the discussion of the Bel lman-Ford method in FL , pp. 74-75 , 92-931.

EVFA is similar to the Bellman-Ford method but is more general. Roughly speaking,

it amounts to replacing the additive semigroup {0 ,1,2 ,.. .} of Bellman-Ford

by an arbitrary semigroup.

(E) This is a special case of a more gene ral prob lem , which may be formulated

as fol l ows: A function q is defined on a set of nodes an d edges of G , with

m g  q c {i , ”, m}, and an i nteger £ � 0 is g iven. For each k ~ t , f i n d

shortest paths along which ~ has at most k relative extrema .

As the term is used here, a relative extremum of a real sequence (c~~,
..., c x )

is an ordered pair (r , s) such that O<r~s<u and

a < c x  “ cz > a  or c~ > c x  c~x < c x
r—l r s si-i r—l r s s+l

For a walk W = (x 0 ,-- . - • , xe), let

exp W = (x0, (x0, x1 ), xi,
-.-
~~~

(xt 1~
xt), xt),

the expanded versi on of W in which nodes and edges alternate . Let W~ denote

the sequence of ~-values corresponding to the elements of exp W that belong to

dmn q, and let p (W) denote the number of relati ve extrema of W,~. The general

problem is to find shortest paths P for which p~,(P )  � k. Problem (E) is the

speci al case i n whi ch

(*) m = 2 and dmn c~ = N A u B , with ~~= l  on A and ~ = 2  on B.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .i ..~~~.. . _L. ~~~~~~~~~~~~~~~~~ ~ —_... .... .. . . _ .~~~~~~_ ~~~~~~~ ,~ ..L. —_— .. .._. 
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As is shown below , this can be handle d by EVFA. However , we do not know how to use

EVFA efficiently for the general problem , or even for the following specia~ cases :

m = 3  and dmn~~~= N ;

in = 2 and dmn ~ is a proper subset of N;

m = 2 and dmn ~ is the set E of all edges of C.

In each case there is diffi culty , even when L is L.~ and all values of the edge-

length x are positi ve , in constructing a suitable family F satisfying conditions

(3) and (4).

Now let us return to (E) in the formulation provided by (*), except that the

condition dmn ~ = N may be replaced by dmn ~ ~ N. For O� ksZ and u , vc{l ,2},

let W
~~
(k) denote the set of all wal ks W = (x0,” , x

~
) such that ~(x0) 

=

u, 
~
(kt ) = v , and W~ has at most k relative extreme (equivalently, W oscillates

at most k times between A and B). Let

= {Wu v (k): u , ve{1 , 2), k � £)

and let T consist of all triples.

(W
~~
(i),W

~~
(j),W

~~
(k)) for uc (l,2) and ({i,j} = {O,k} or (i>O<j and i+j = k-i)),

for (u ,v} = {l ,2) and i+j = k-i ,

~~~~~~~~~~~~~~~ 
for {u,v} = (1 ,2) and ((i,j) = (k ,0) or (j>O and i+j = k-i)),

for {u ,v) = {l ,2} and~(i ,j) = (0,k) or (i>0 and i+j = k-i)).

Then EVFA can be app l i ed , solving problem (E) in time 0(.e2ri3 ).

(F) Define ~ on al l nodes and edges of C, wi th • = 1 on nodes and edges of

the graph H and ~ = 2 otherwise. Wi th the as in the preceding paragraph ,

the paths P for which P n H has at most k components are precisely the paths in



r~ _ _ _  ~~~~~~ 
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w11(2k-3) u W~2(2k-2) u W21 (2k-2) u w 22 (2k -3) .

Hence (F) can also be handled by EVFA in time O(Z2n3).

(G) This problem is also discussed in a more general setting. With ~ as in the

discussion of (E) and with in = 2, let a walk W be called p—a ltern at ing if the

sequence W~ alternates between 1 and 2. How can shortest 4-alternating paths be

found? Problem (C) is the special case in which dmn ~ = E, ~ = 1 on M , and

c
~ =2 on E - M.

When dmn ~ ~ N , EVFA can be applied by taking ~ = 
ll ’~l2’~2l’~22~’ 

where

~uv 
is the set of all 4-alternating walks W such that the sequence W~, starts

with u and ends with v. Then let T consist of all triples (
~~~v

’
~ vu ’~~i~)

and ~~~~~~~~~~ for all u, Ve {l ,2}.

Now consider the case in which dmn ~ = E. Then each pair (i , .5) forms a

4-alternating path (recall the standing hypothesis that C is the complete graph

on N) but of course we are interested only in paths of finite length. Define F

by restricti ng the 
~uv

’
~ 

of the preceding paragraph to include only walks of

fini te length , and assume

Ct) each al ternating ci rcuit of finite length has an even number of edges.

Then problem (F) can be handled by EVFA wi th I consisting of all triples

~ up ’ ~qv ’ ~iuv
) for u , v ~ (0,1) and {p,q} = (0,1). However , this approach

may fail when (-f.) fails for then a path associated with an alternating walk need

not be~altemnating path and thus condition (4) may fail. For example , cons id er

Fig. 1 and note that (x 2,X3,X4,x5) is an alternating circuit according to our

definition , where the solid edges are those in M.
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x3 •::Z—•——-—•-—-—-$ x.
,

‘ ,

— —
‘
~.~~~~~~~~~ — _ .x 7X1 x 6

Fig. 1: The walk (x
0,

•.. 
, x7) is alternating but the associated path

(x0,x1,x7) is not.

Brown [B] suggests a method for finding shortest M-alternating paths in a directed

graph 0 = (N, E) (no longer assumed complete). Another directed graph 0* is

constructed , havi ng two nodes x ’ and x” for each node x of D, and the edges

of 0 are obtained as follows for each edge (x, y) of 0 with length x (x,y)<oo.

when (x,y) € M , (x’,y”) is an edge of D* wi th length A (x, y);

when (x,y) ~ M , (x” , y’) is an edge of D* wi th length A (x, y).

Itis cl aimed [B] there is a natural one-to-one correspondence between alternating paths
*

in D and ordinary paths in D . Thus the problem of findi ng shortest alternating

paths in 0 is equivalent to the problem of finding shortest ordinary paths in

D~. The claim is correct when (+) holds but not in general , as can be seen from

Fig. 1. For example , if 0 is the graph of Fig. 1 then the path ~~~~~~~~~~~~~~~~~~

in 0 corresponds to the walk (x ,x1,x2,x3,x4,x2,x1,x7) i n D.

In general , Brown ’s construction does produce a one—to-one correspondence between
*

the walks in 0 and the alternating walks in D. If 0 has no negative alternating
*circuit then 0 has no negative circuit and the Floyd-Warsha ll algori thm can be

applied to find shortest paths (=shortest walks) in D~ and hence alte rnating walks

In D. The la tter may or may not be paths. For general grap hs, even when I = L 1
and may or may not be paths. For genera l graphs , even when I = L1 and A ~‘ 0, we
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do not know how to apply EFVA directly to find shortest alternating paths.

However, the more compl icated “b lossom ” methods of Edmonds [E1][E2]LL] will

apparently apply to this problem.

We close with a query . For 0�9~�m<n and for p € {~ , 
= , �) let

p
0
(Z,m ,n ,p) ~ resp. P

1
(~~,m ,n ,p)~ denote the f o l l o w i n g  problem :

A complete graph C is given , with n nodes and positive edge-lengths .

In addition , a set of in special nodes (resp. edges) of C is given. Find

shortest paths P in C such that the number of special nodes Kmesp. edges)

used by P is in the relation p to 2~.

We have seen here that the extended version of Floyd ’s algorithm solves

and P1(~.,m ,n ,�) in time 0(~.
2n3). By contrast , the problem

P0(n,n ,n ,=) is essentially the traveling salesman problem and hence is NP—

complete [K1][K2][AHU]. What else of interest can be said about the computa-

tional complexity of ~0(9.,m ,n ,p) and P(Z,m ,n ,p) for p ~ {= , �}?

S

_ _  — - - - _ _ _
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